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Abstract
We solve a family of Gaussian two-matrix models with rectangular N ×(N +ν)

matrices, having real asymmetric matrix elements and depending on a non-
Hermiticity parameter μ. Our model can be thought of as the chiral extension
of the real Ginibre ensemble, relevant for Dirac operators in the same symmetry
class. It has the property that its eigenvalues are either real, purely imaginary or
come in complex conjugate eigenvalue pairs. The eigenvalue joint probability
distribution for our model is explicitly computed, leading to a non-Gaussian
distribution including K-Bessel functions. All n-point density correlation
functions are expressed for finite N in terms of a Pfaffian form. This contains a
kernel involving Laguerre polynomials in the complex plane as a building block
which was previously computed by the authors. This kernel can be expressed
in terms of the kernel for complex non-Hermitian matrices, generalizing the
known relation among ensembles of Hermitian random matrices. Compact
expressions are given for the density at finite N as an example, as well as
its microscopic large-N limits at the origin for fixed ν at strong and weak
non-Hermiticity.

PACS numbers: 02.10.Yn, 11.15.Ha, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Non-Hermitian random matrix theory (RMT) introduced by Ginibre [1] is almost as old as its
Hermitian counterpart. At first it was seen as an academic exercise to drop the Hermiticity
constraint and thus to allow for complex eigenvalues. However, in the past two decades,
we have seen many applications of such RMTs featuring complex eigenvalues precisely for
physical reasons, and we refer to [2] for examples and references. Because matrices with real
data are often modelled by RMT, one could view the real Ginibre ensemble of asymmetric
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matrices as being the most interesting non-Hermitian ensemble. Unfortunately, it has also
turned out to be the most difficult one, as it took over 25 years to compute the joint distribution
of its eigenvalues [3, 4], being real or coming in complex conjugate pairs. The integrable
structure and all eigenvalue correlation functions were computed only very recently for the
real Ginibre ensemble [5–11].

Our motivation for generalizing this model is as follows. In the 1990s, Verbaarschot
proposed extending the three classical (and Hermitian) ensembles of Wigner and Dyson
to the so-called chiral RMT [12], in order to describe the low energy sector of quantum
chromodynamics (QCD) and related field theories. These chiral ensembles are also known
as Wishart or Laguerre ensembles. Their non-Hermitian extensions [13, 14] were motivated
by adding a chemical potential for the quarks, which breaks the anti-Hermiticity of the
Dirac operator in field theory. It was observed numerically quite early [14] that these chiral
versions of the Ginibre ensembles have distinct features, either attracting eigenvalues to the
real and imaginary axes (real matrices), repelling them (quaternion real matrices) or having
no such symmetry (complex matrices). Only later was it realized how to solve these chiral
non-Hermitian RMTs analytically, by using replicas [15] or by extending the initial one-
matrix model plus a constant symmetry-breaking term [13, 14] to a two-matrix model. This
idea from Osborn [16] led to a complex eigenvalue model that can be solved using orthogonal
polynomials in the complex plane [17]. The solution of the two-matrix model was then derived
for complex [16, 18] and quaternion real matrices [19]. Our paper aims to solve the third and
most difficult of such non-Hermitian RMTs, a chiral two-matrix model of real asymmetric
matrices introduced in our previous work [20]. For more details on RMT applications to the
QCD-like Dirac operator spectrum, we refer to [21].

Many more non-Hermitian RMTs than just the three Ginibre ensembles and their chiral (or
Wishart/Laguerre) counterparts exist [22] and these are mostly unsolved to date. Very recently
another two-matrix model generalization of the real Ginibre ensemble was introduced and
solved in [23]. There the eigenvalue correlations of the ratio of two quadratic matrices are
sought, whereas here we deal with the product of two rectangular matrices. Whilst the former
case leads to a Cauchy-type weight function, in our model we will obtain a weight of Bessel-K
functions for the eigenvalues. We hope that given the plethora of RMT applications, our
particular model will find applications beyond the field theory that it has been designed for.

The approach of solving our model is based on the variational method detailed in [7, 10].
It follows its two main ideas: first to compute the joint probability distribution function (jpdf)
for general N by reducing it to 2×2 and 1×1 blocks. Because we are considering rectangular
matrices, this is a priori not guaranteed to work. Second, we use the variational method [7, 10]
in combining all density correlations with n points (being real, purely imaginary or complex
conjugates) into a single Pfaffian form. This reduces the computation to determining its main
building block, an anti-symmetric kernel. Whilst it can be deduced from the spectral 1-point
density—which was known for the real Ginibre ensemble [24]—we here exploit an idea from
our previous publication [20]. There the kernel was determined by computing the expectation
value of two characteristic polynomials using Grassmannians. The same relation between
kernel and characteristic polynomials is known to hold for the symmetry classes with complex
[25] or quaternion real matrices [19], in fact for any class of non-Gaussian weight functions.

As a new result, we can express our kernel for real asymmetric matrices in terms of the
kernel for complex non-Hermitian matrices. Such a relation might have been expected to exist
as it is known for Hermitian RMT [26, 27].

Other methods that have been successfully applied to the real Ginibre ensemble, such as
the supersymmetric method [28], skew-orthogonal polynomials [8] or probabilistic methods
[9], are very likely to be extendible to our two-matrix model as well.
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The paper is organized as follows. In section 2, we summarize our main statements: the
definition of the matrix model, its jpdf in terms of the real, imaginary and complex conjugate
eigenvalue pairs, and the solution for all density correlation functions as a Pfaffian of a matrix-
valued kernel. Examples are given for the simplest spectral densities at finite N and in the
microscopic large-N limits for strong and for weak non-Hermiticity at the origin. These
findings are then detailed in section 3 on the jpdf, where we separately treat N = 1, 2 and
general N. The spectral density correlations and their finite- and large-N results are derived
and illustrated in section 4. Our conclusions are presented in section 5. Some technical details
on the computation of the Jacobian are collected in appendix A.

2. Summary of results

2.1. The model

The chiral Gaussian ensemble of real asymmetric matrices as introduced by the authors [20]
is given by a two-matrix model of rectangular matrices P and Q of sizes N × (N + ν) with real
elements, without further symmetry restriction. The partition function normalized to unity is
given by

Z =
(

1√
2π

)2N(N+ν) ∫
RN(N+ν)

dP

∫
RN(N+ν)

dQ exp

[
−1

2
Tr (PP T + QQT )

]
, (2.1)

where we integrate over all the independent, normally distributed matrix elements of P and Q.
We are interested in the eigenvalues of the matrix D of size 2N + ν squared

D ≡
(

0N×N P + μQ

P T − μQT 0(N+ν)×(N+ν)

)
≡
(

0N×N A

BT 0(N+ν)×(N+ν)

)
. (2.2)

Here μ ∈ (0, 1] is the non-Hermiticity parameter, interpolating between the chGOE
(lim μ → 0) and maximal non-Hermiticity (μ = 1). The analogous chiral Gaussian two-
matrix models with unitary and symplectic symmetry were introduced in [16, 19], respectively.

In applications to field theory, D corresponds to the chiral Dirac operator, and μ to the
chemical potential3. Typically, Nf extra determinants of the type det[D + mI2N+ν] are inserted
into the partition function (2.1), where m is the quark mass, but we will restrict ourselves in
this paper to the case Nf = 0; this is referred to as the quenched case.

For later convenience, we give an equivalent form of equation (2.1), by changing variables
from

P = 1
2 (A + B), Q = 1

2μ
(A − B), (2.3)

to matrices A and B defined in equation (2.2):

Z =
(

1

4πμ

)N(N+ν) ∫
RN(N+ν)

dA

∫
RN(N+ν)

dB e− 1
2 η+ Tr (AAT +BBT )+ 1

2 η− Tr (ABT +BAT ) (2.4)

with η± ≡ 1 ± μ2

4μ2
. (2.5)

The two μ-dependent combinations η± will be used throughout the paper.

3 The Euclidian Dirac operator in field theory is actually anti-Hermitian for μ = 0, but we will not use this convention
here.
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2.2. Eigenvalue representation

The eigenvalues � of the Dirac matrix D are determined from the following equation4:

0 = det[�I2N+ν − D] = �ν det[�2IN − ABT ] = �ν

N∏
j=1

(
�2 − �2

j

)
. (2.6)

For this reason we will first compute the eigenvalue distribution of the N × N Wishart-type
combination of matrices C ≡ ABT . C has real elements, and therefore its eigenvalues �2

j are
real, or else come in complex conjugate pairs. The matrix D itself has the following solutions:
ν zero-eigenvalues � = 0, and 2N eigenvalues coming in pairs � = ±�j . Consequently the
non-zero eigenvalues of D fall into three categories:

(i) for �2
j > 0: real pairs � = ±�j ∈ R

(ii) for �2
j < 0: purely imaginary pairs � = ±�j ∈ iR

(iii) for pairs �2
j ,�

∗ 2
j : quadruplets � = ±�j,±�∗

j ∈ C\{R ∪ iR}.
This leads to an accumulation of eigenvalues on both the real and the imaginary axes as already
pointed out in [20]. The same phenomenon has been observed numerically in a one-matrix
model [14] based on the proposal [13] (obtained from equation (2.1) by choosing Q ∼ I ).
This is in contrast to the real Ginibre model where eigenvalues accumulate only on the real
axis (see e.g. [29]).

The joint probability distribution (jpdf) for the matrix C is obtained from equation (2.4)
by inserting a matrix delta function; using the cyclic property of the trace we then have

P(C) ∼ exp[η− Tr C]
∫

RN(N+ν)

dA

∫
RN(N+ν)

dB exp
[
−η+

2
Tr(AAT + BBT )

]
δ(C − ABT ).

(2.7)

As shown in section 3, our final result for the jpdf of D in terms of squared variables
zk = xk + iyk ≡ �2

k with d2zk = dxk dyk is

Z =
∫

C

d2z1 . . .

∫
C

d2zNPN(z1, . . . , zN) (2.8)

= cN

N∏
k=1

∫
C

d2zkw(zk)

N∏
i<j

(zi − zj )

[N/2]∑
n=0

(
n∏

l=1

(−2i)δ(x2l−1 − x2l )δ(y2l−1 + y2l )�(y2l−1)

× �(x1 > x3 > · · · > x2n−1)�(x2n+1 > x2n+2 > · · · > xN)δ(y2n+1) . . . δ(yN)

)
. (2.9)

The integration measure d2zk extends over the complex plane for each of the zk. The
normalization constant cN will be given in equation (3.46). In equation (2.9) we sum over all
distinct possibilities for N eigenvalues to come in n � 0 complex conjugate pairs, with the
remaining N − 2n � 0 eigenvalues being real. For n = 0 in equation (2.9), the product in the
first line is simply unity.

Specifically, the jpdf is only non-zero when the eigenvalues appear in the following
order: the n complex eigenvalue pairs must be placed first, ordered with respect to decreasing

4 This follows from equation (2.2) using the standard relation det
(

a b
c d

)
= det(d) det(a − bd−1c) for square

matrices a and d, with d invertible.
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real parts:5(
Im �2

1 > 0
)
,
(
Re �2

2 = Re �2
1, Im �2

2 = −Im �2
1

)
,
(
Re �2

3 � Re �2
2, Im �2

3 > 0
)
, . . . ,(

Re �2
2n−1 � Re �2

2n−2, Im �2
2n−1 > 0

)
,
(
Re �2

2n = Re �2
2n−1, Im �2

2n = −Im �2
2n−1

)
,

(2.10)

and the N − 2n � 0 real eigenvalues follow, and are also ordered with respect to decreasing
real parts:

�2
2n+1 > �2

2n+2 > · · · > �2
N . (2.11)

The function g(z) inside the weight function

w(z) ≡ |z|ν/2 exp[η−z]g(z) (2.12)

depends on whether z (≡�2) is real or complex:

g(z) ≡ 2Kν
2
(η+|z|) for z ∈ R, (2.13)

[g(z)]2 = [g(z∗)
]2 ≡ 2

∫ ∞

0

dt

t
e−2η2

+t (x2−y2)− 1
4t K ν

2

(
2η2

+t (x
2 + y2)

)
erfc(2η+

√
t |y|)

for z = x + iy ∈ C. (2.14)

Because the complex eigenvalues come in pairs, we will always get two factors g(z) for each
pair (note the square on the left-hand side of definition (2.14)). The limit y → 0 of a single
g(z) in equation (2.14) is smooth, leading to equation (2.13).

The essential idea in the derivation of the jpdf detailed in section 3 is to reduce the
calculation of the jpdf for D with general N down to 2 × 2 and 1 × 1 blocks, which can be
handled in terms of the N = 2 and N = 1 problems which we solve explicitly.

2.3. Density correlation functions for finite N

We follow the method of using a generating functional for all eigenvalue density correlation
functions introduced in [7, 10]. Because we essentially follow [7, 10], we can be brief here.
We enlarge the definition of the partition function (2.9) by introducing sources f

(
�2

k

)
6:

Z[f ] ≡
∫

C

d2z1 . . .

∫
C

d2zNPN(z1, . . . , zN)f (z1) . . . f (zN). (2.15)

For pairwise distinct arguments z1 
= z2 
= · · · 
= zn, the n-point density correlation functions
are then generated in terms of functional derivatives with respect to the sources, leading to
insertions of delta functions δf (z)

δf (z′) = δ2(z − z′):

Rn(z1, . . . , zn) = δ

δf (z1)
· · · δ

δf (zn)
Z[f ]

∣∣∣∣
f ≡1

. (2.16)

In doing so, each n-point function contains a sum of different contributions, splitting n into all
possible combinations of real eigenvalues and complex eigenvalue pairs. Both the generating
functional Z[f ] and the n-point density Rn, can be written as Pfaffians [6, 7]:

Z[f ] = cN Pf

[∫
C

d2z1

∫
C

d2z2f (z1)f (z2)F(z1, z2)z
i−1
1 z

j−1
2

]
1�i,j�N

, (2.17)

5 Unlike for real eigenvalues, two complex eigenvalues that are not complex conjugates can have the same real part,
without the jpdf vanishing. Although being of measure zero, we can fix this ambiguity by ordering with respect to
decreasing the absolute imaginary part.
6 These will symmetrize the ordered eigenvalues when differentiating.
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Rn(z1, . . . , zn) ≡ N !

(N − n)!

∫
C

d2zn+1 . . .

∫
C

d2zNPN(z1, . . . , zN)

= Pf

[
KN(zi, zj ) −GN(zi, zj )

GN(zj , zi) −WN(zi, zj )

]
1�i,j�n

. (2.18)

In the latter case, one has to compute the Pfaffian of the ordinary, 2n × 2n matrix composed
of the matrix of quaternions inside the square bracket. We have restricted ourselves to even
N for simplicity. The case of odd N can be treated along the lines of [10] (or [11] for
an alternative formulation). We have introduced the following functions of two complex
variables zj = xj + iyj , j = 1, 2:

F(z1, z2) = w(z1)w(z2)(2iδ2(z1 − z∗
2)sgn(y1) + δ(y1)δ(y2)sgn(x2 − x1)), (2.19)

KN(z1, z2) = η−
8π(4μ2η+)ν+1

×
N−2∑
j=0

(
η−
η+

)2j
(j + 1)!

(j + ν)!

{
Lν

j+1

(
z2

4μ2η−

)
Lν

j

(
z1

4μ2η−

)
− (z1 ↔ z2)

}
(2.20)

= η−
8π(4μ2η+)ν+1

(
z2

∂

∂z2
− z1

∂

∂z1
− z2 − z1

4μ2η−

)

×
N−2∑
j=0

(
η−
η+

)2j
j !

(j + ν)!
Lν

j

(
z1

4μ2η−

)
Lν

j

(
z2

4μ2η−

)
, (2.21)

GN(z1, z2) = −
∫

C

d2zKN(z1, z)F(z, z2), (2.22)

WN(z1, z2) = −F(z1, z2) +
∫

C

d2z

∫
C

d2z′F(z1, z)KN(z, z′)F(z′, z2). (2.23)

The kernel KN(z1, z2) is the building block of all correlations and is actually defined in terms
of F(z1, z2) (see section 4 for further details). However, we will give a different proof of the
precise form of equation (2.20) which does not rely on direct evaluation of the definition; rather,
it will be calculated from the expectation value of two characteristic polynomials (see also
[20]). Note that in equation (2.21) we have expressed the kernel of our real two-matrix model
(β = 1) as a derivative of the kernel of the complex two-matrix model [16] (β = 2). We
found that a similar relation holds relating the kernel of the β = 1 real Ginibre ensemble
[8, 20] to the one for the β = 2 complex Ginibre ensemble [30], containing Hermite
polynomials in the complex plane.

There is an integration theorem in analogy to other matrix models with complex
eigenvalues [7, 26, 31]:∫

C

d2znPf

[
KN(zi, zj ) −GN(zi, zj )

GN(zj , zi) −WN(zi, zj )

]
1�i,j�n

= (N − n + 1)Pf

[
KN(zi, zj ) −GN(zi, zj )

GN(zj , zi) −WN(zi, zj )

]
1�i,j�n−1

. (2.24)

This is the major advantage of working with an n-point correlation function as defined in
equation (2.18) which contains all possible contributions of real eigenvalues and complex
conjugate eigenvalue pairs. Had we studied instead a particular n-point function with a fixed
and given number of real and complex conjugate eigenvalues, we would have found that such
a simple integration theorem does not exist [5].

6
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Let us explain one example explicitly, the spectral density, which we will give for even N
only. Details can be found in section 4 including figures, where we follow the method of [7,
10]. From equation (2.18), we have

R1(z1) =
∫

C

d2zKN(z1, z)F(z, z1) ≡ RC

1 (z1) + δ(y1)R
R

1 (x1). (2.25)

Inserting the appropriate weight from equations (2.13) and (2.14) we obtain with z = x + iy

RC

1 (z) = −2i|z|ν e2η−xsgn(y)KN(z, z∗) (2.26)

× 2
∫ ∞

0

dt

t
exp

[
−2η2

+t (x
2 − y2) − 1

4t

]
Kν

2
(2η2

+t (x
2 + y2))erfc(2η+

√
t |y|),

RR

1 (x) =
∫ ∞

−∞
dx ′sgn(x − x ′)|xx ′| ν

2 eη−(x+x ′)2Kν
2
(η+|x|)2Kν

2
(η+|x ′|)KN(x, x ′). (2.27)

Equations (2.25)–(2.27) are valid for even N only. In the final step we can change from squared
variables z = x + iy = �2 to Dirac eigenvalues �, using the simple transformations

RC

1Dirac(z) = 4|z|2RC

1 (z2),

RR

1Dirac(x) = 2|x|RR

1 (x2).
(2.28)

Note that the latter describes the density both of real Dirac eigenvalues, for RR

1 Dirac(x) with
x ∈ R, and of purely imaginary Dirac eigenvalues, for RR

1 Dirac(x) with x ∈ i R. Because
RR

1 (x2) 
= RR

1 (−x2), this is not the same function; see e.g. figure 2 in section 4.

2.4. The large-N limit

In order to take the large-N limit in principle, one first has to rescale all eigenvalues in equation
(2.9) �k → √

N �k , which is equivalent to giving all the matrix elements in equation (2.1)
Gaussian weights exp[−(N/2) Tr P T P ] for P, and similarly for Q. In this parametrization,
the macroscopic spectral density will have a compact support in the large-N limit, given by a
circle for μ = 1, and an ellipse for 0 < μ < 1. We will not discuss this macroscopic limit
in detail but will focus on the local correlations, i.e. the microscopic large-N limit. Here one
has to distinguish between strong and weak non-Hermiticity [32], each of which involves a
second rescaling.

We first give the strong non-Hermiticity limit after the first rescaling, defined by keeping
μ fixed and only rescaling the eigenvalues according to

lim
N→∞,�→0

N�2 ≡ λ2. (2.29)

This scaling actually cancels the first scaling. Because of this, the scaling limit is also true
away from the origin.

We only give the microscopic kernel here, to be inserted into equations (2.26) and (2.27).
For μ = 1, the kernel simplifies to monic powers; see equation (33) in [20]. Its large-N limit
is easily seen to lead to a modified Bessel function

KS
ν (z1, z2) = (z1 − z2)

64π2ν

∞∑
j=0

1

j !(j + ν)!

(z1z2

4

)j

= (z1 − z2)

64π
(z1z2)

−ν/2Iν(
√

z1z2). (2.30)

Because μ is not scaled here, in contrast to the weak limit below, the insertion into
equations (2.26) and (2.27) is relatively straightforward, apart from the phase for negative
real eigenvalues. The case for general μ which can also be obtained by simply rescaling the
arguments in equation (2.30) is discussed in section 4, where we also show plots.

7
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The weak non-Hermiticity limit at the origin (again after the initial rescaling above) is
defined by scaling both the squared Dirac eigenvalues �2 and the chemical potential μ2 with
2N , corresponding to the volume in field theory:

lim
N→∞,μ→0

2Nμ2 ≡ α2, lim
N→∞,�→0

(2N)2�2 ≡ λ2. (2.31)

In this limit, the macroscopic density is projected back onto the real axis, with probability
density given by the semi-circle as for μ = 0 (when our model is Hermitian), whilst
microscopically the eigenvalues still extend into the complex plane.

The limiting microscopic kernel, as a function of squared variables z = �2, can be
expressed in terms of our completely unscaled finite-N kernel as

KW(z1, z2) ≡ lim
N→∞

[
1

(4N)2

(
z1z2

(4N)2

)ν/2

KN

(
z1

4N
,

z2

4N
;μ = α√

2N

)]

= 1

256πα2

∫ 1

0
ds s2 e−2α2s2{√z1Jν+1(s

√
z1)Jν(s

√
z2) − (z1 ↔ z2)} (2.32)

which is to be inserted into the definition of the density (2.25). From equation (2.26), we
obtain for the microscopic density of complex eigenvalues

ρCW
ν (z) = −2i sgn(y) exp

[ x

4α2

]
KW(z, z∗)

× 2
∫ ∞

0

dt

t
exp

[
− t (x2 − y2)

32α4
− 1

4t

]
Kν

2

(
t (x2 + y2)

32α4

)
erfc

(√
t |y|

4α2

)
. (2.33)

The real eigenvalue density is more subtle; we again refer to section 4 for a more detailed
discussion of the weak limit, including figures.

3. Calculation of the joint probability distribution function

In this section, we compute the joint probability density function (jpdf) as stated in equation
(2.9) for the squared non-zero eigenvalues of D. For pedagogical reasons, we first compute
the jpdf separately for N = 1 and 2 in sections 3.1 and 3.2, respectively. This is because we
will need these results when treating the general N case in section 3.3, as these sub-blocks will
appear in the computation of the general Jacobian. Some technical details will be deferred to
appendix A. The cases with N = 1, 2 will make the parametrization and residual symmetries
more transparent for later.

3.1. The N = 1 case

In this simplest case, our matrices P and Q, or after changing variables A and B in equation
(2.3), are of size 1 × (1 + ν) and are thus given by vectors a and b, each of length ν + 1. The
eigenvalue equation (2.6) for D becomes

0 = �ν(�2 − a · b), (3.1)

and thus we only have a single non-zero (and real) eigenvalue �2 to determine. Its (j)pdf is
given by

P(�2)= 1

(4πμ)ν+1

∫
Rν+1

da
∫

Rν+1
db exp[η−a · b] exp

[
−η+

2
(|a|2 + |b|2)

]
δ(�2 − a · b).

(3.2)

We simplify this expression in two steps. First, without loss of generality, we may choose the
direction of b as the first basis vector for a in Cartesian coordinates. This leads to a decoupling

8
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of the remaining components a2, . . . , aν+1, and the integral now only depends on b through
its modulus b = |b|. Second, we choose polar coordinates for the vector b, leading to the
Jacobian bν , and, on symmetrically extending the integral over b to −∞, we obtain

P(�2) = 1

(4πμ)ν+1

2π(ν+1)/2


(

ν+1
2

) (2π

η+

)ν/2

eη−�2 1

2

∫ ∞

−∞
da1

∫ ∞

−∞
db e− 1

2 η+(a2
1 +b2)δ(�2 − a1b)|b|ν

= 1

23ν/2+2μν+1η
ν/2
+

√
π
(

ν+1
2

) eη−�2
∫ ∞

−∞
db e− 1

2 η+(b2+�4/b2)|b|ν−1. (3.3)

The first new pre-factor comes from the surface area of the unit ν-sphere

Sν ≡ 2π(ν+1)/2


(

ν+1
2

) = VO(ν + 1)

VO(ν)
(3.4)

(with VO(ν) being the volume of the orthogonal group) through the angular integration over
b, the final pre-factor from the Gaussian integrations over the decoupled components of a. It
is important to note that the first line of equation (3.3) looks like a reduction to the ν = 0 case,
apart from the extra factor |b|ν from the Jacobian. We will use the same strategy for N = 2
in the following subsection. In the next step, we change variables et = b2/|�2| to arrive at

P(�2) = 1

23ν/2+2μν+1η
ν/2
+

√
π
(

ν+1
2

) |�|ν eη−�2
2
∫ ∞

0
cosh(νt/2) e−η+|�2| cosh t dt

= 1

23ν/2+2μν+1η
ν/2
+

√
π
(

ν+1
2

) |�|ν eη−�2
2Kν

2
(η+|�2|). (3.5)

Here we have used a particular representation equation, 9.6.24 in [33], of the K-Bessel function.
It directly gives cN=1 times the weight function in equations (2.12) and (2.13) when changing
variables �2 → z, where

cN=1 = 1

2π

1

(2π)ν/2(2μ)ν+1η
ν/2
+

Sν

S0
. (3.6)

This is consistent with equations (2.9), (2.12) and (2.13), and ends our calculation for N = 1.
As a remark, equation (3.5) can be derived in various different ways, including Fourier

transformation. It is known that if a and b are independent random variables with normal
distributions, then the product c = ab has the distribution function P0 ∼ K0. Consequently,
the sum of ν + 1 (independent) such variables ci has a distribution given by the convolution of
ν + 1 functions K0. Fourier transformation F turns this into an ordinary product, and so we
obtain Pν = F−1{(F (P0))

ν+1} ∼ Kν
2
, i.e. on performing the integrals we again reach equation

(3.5).

3.2. The N = 2 case

Our matrices A and B are now given by two row vectors aj=1,2 and bj=1,2 each of length ν + 2:

A =
(

a1

a2

)
, B =

(
b1

b2

)
, C = ABT =

(
a1 · b1 a1 · b2

a2 · b1 a2 · b2

)
. (3.7)

The eigenvalue equation (2.6)

0 = �ν det[�2I2 − ABT ] (3.8)

has two solutions �2
1,2 which may (i) both be real or (ii) form a complex conjugate pair. We

will have to distinguish these two cases below.

9
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For the first step we reduce the calculation of P(C) in equation (2.7) to a matrix integral
of 2 × 2 matrices A′ and B ′ times a Jacobian, as we did for N = 1 in the first line of
equation (3.3). The resulting Jacobian here will be ∼|det B ′|ν . Our aim is to rotate both b1

and b2 into the xy-plane of the coordinates for the aj , as then

ai · bj =
ν+1∑
k=1

aikbjk = ai1b
′
j1 + ai2b

′
j2, (3.9)

and the remaining components of the aj decouple. Here we use primed vectors and coordinates
to denote the quantities after rotation.

For ν = 1 the corresponding Jacobian is obtained as follows. Rotating the 3D vector into
2D by b′

1 = O b1 gives rise to a factor ∼|b1|. Alternatively it can be computed by comparing

the initial and final ‘volumes’ (generalized surface areas, in fact), yielding S2|b1|2
S1|b1| = 2|b1|,

where Sn is given by equation (3.4). The remaining rotation around b1 rotates b2 into the
xy-plane as well, giving S1|b2| sin θ

S0
= π |b2| sin θ , in which θ ∈ [0, π ] is the angle between b1

and b2. The final Jacobian reads

|b1||b2| sin θ = |b′
1||b′

2| sin θ =
∣∣∣∣b′

11 b′
12

b′
21 b′

22

∣∣∣∣ = |det B ′|, (3.10)

where the last equality easily follows by parametrizing b′
1 and b′

2 in 2D, and the factor S2
S0

corresponds to the angular integration over b.
For ν > 1, we can thus successively repeat these steps by projecting onto one dimension

lower until we reach the xy-plane. The volume factors will telescope out and we arrive at

SνSν+1

S0S1
(|b′

1||b′
2| sin θ)ν = SνSν+1

S0S1
|det B ′|ν . (3.11)

We thus have reduced equation (2.7) for N = 2 from 2 × (2 + ν) down to 2 × 2 matrices:

P(C) = cN=2η+

2π3
eη− Tr C

×
∫

R4
dA′

∫
R4

dB ′ exp

[
−1

2
η+ Tr (A′A′T + B ′B ′T )

]
δ(C − A′B ′T )|det B ′|ν, (3.12)

where cN=2 is defined in anticipation of the final result as

cN=2 = 1

8π

1

(2π)ν(2μ)4+2νην+1
+

SνSν+1

S0S1
. (3.13)

The Gaussian integrals over the decoupled components of the two vectors ajk for k > 2 have
been evaluated, using that Tr AAT = |a1|2 + |a2|2. The 2 × 2 matrix A′ can now be integrated
out, by formally changing variables A′ → F = A′B ′T with the Jacobian |det B ′|−2:

P(C) = cN=2η+

2π3
eη− Tr C

∫
R4

dB ′ exp

[
−1

2
η+ Tr

(
CCT (B ′B ′T )−1 + B ′B ′T )] |det B ′|ν−2.

(3.14)

Note the similarity with equation (3.3).
In a second step, we perform the integral

∫
dB ′. Because CCT is a symmetric, positive

definite matrix, we can diagonalize it with an orthogonal transformation O

OT (CCT )O =
(

λ1 0
0 λ2

)
, λ1,2 � 0. (3.15)

10
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Using the invariance of dB ′ we can change variables B ′ → OB ′ with (B ′B ′T )−1 →
O(B ′B ′T )−1OT . We thus replace CCT by its diagonalized form equation (3.15) in the exponent
in equation (3.14):

Tr(B ′B ′T + CCT (B ′B ′T )−1) = a2 + b2 + c2 + d2 + h−2((c2 + d2)λ1 + (a2 + b2)λ2), (3.16)

where we have explicitly parametrized

B ′ ≡
(

a b

c d

)
, h ≡ det B ′ = ad − bc. (3.17)

We now introduce h as an independent variable in equation (3.14) by inserting a delta-function
constraint in its integral representation:

P(C) = cN=2η+

4π4
eη− TrC

∫ ∞

−∞
dh|h|ν−2

∫
R4

dB ′
∫ ∞

−∞
dω e−iω(h−(ad−bc))

× exp
[
−η+

2
[a2 + b2 + c2 + d2 + h−2((c2 + d2)λ1 + (a2 + b2)λ2)]

]
= cN=2η+

4π4
eη− Tr C2

∫ ∞

0
dh hν−2

∫ ∞

−∞
dω e−iωh (2π)2

ω2 + η2
+(1 + λ1/h2)(1 + λ2/h2)

, (3.18)

where we performed the Gaussian integrals successively in pairs a, d and b, c, and switched
to positive h. The denominator in the third line can be rewritten at the cost of an additional
integral, 1

a
= ∫∞

0 dt e−at for a > 0, and after changing variables ω → τ = ωh, we have

P(C) = 2cN=2η+

π2
eη− Tr C

∫ ∞

0
dh hν−1

∫ ∞

−∞
dτ e−iτ

∫ ∞

0
dt e−(τ 2+η2

+(h2+(λ1+λ2)+λ1λ2/h2))t

= 2cN=2η+

π3/2
(λ1λ2)

ν/4 eη− Tr C

∫ ∞

0

dt√
t

exp

[
−η2

+(λ1 + λ2)t − 1

4t

]
Kν

2

(
2η2

+

√
λ1λ2t

)
.

(3.19)

We performed the Gaussian integration over τ first, and then employed the following integral
from equation 8.432.6 of [34]:

Kν(z) = 1

2

( z

2

)ν
∫ ∞

0
dt

e−t−z2/4t

t ν+1
(3.20)

to do the h-integration after another change of variables, arriving at our result (3.19).
As the final step we need to express P(C) in terms of the eigenvalues of C (i.e. �2

1 and
�2

2), rather than those of CCT. This will also involve a Jacobian to be computed later. In
equation (3.19), we need

Tr C = �2
1 + �2

2, λ1λ2 = det[CCT ] = �4
1�

4
2, (3.21)

which are trivial. Only the combination λ1 + λ2 = Tr(CCT ) requires more calculation. In
general, we can orthogonally transform any real matrix C to the form

C =
(

sin θ −cos θ

cos θ sin θ

)(
ε1 s

−s ε2

)(
sin θ cos θ

−cos θ sin θ

)
, (3.22)

where ε1, ε2, s and the rotation parameter θ are all real. The matrix parameters {ε1, ε2, s} and
eigenvalues

{
�2

1,�
2
2

}
follow from

0 =
∣∣∣∣ε1 − �2 s

−s ε2 − �2

∣∣∣∣ = �4 − (ε1 + ε2)�
2 + (ε1ε2 + s2), (3.23)

with solution

�2
1,2 = ε1 + ε2

2
±
√

(ε1 − ε2)2

4
− s2. (3.24)

11
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This can be inverted for ε1,2 for later use to

ε1,2 = �2
1 + �2

2

2
±
√(

�2
1 − �2

2

)2
4

+ s2. (3.25)

This immediately leads to

λ1 + λ2 = Tr(CCT ) = ε2
1 + ε2

2 + 2s2 = �4
1 + �4

2 + 4s2. (3.26)

On inserting equations (3.21) and (3.26) into equation (3.19), we can express P(C) in terms of
�2

1,2. However, we have changed variables twice to arrive here, first from the matrix elements
cij of C to {ε1, ε2, s, θ} and second from {ε1, ε2} to

{
�2

1,�
2
2

}
. The corresponding Jacobians

we must multiply by are given by

J1 =
∣∣∣∣∂{c11, c12, c21, c22}

∂{ε1, ε2, s, θ}
∣∣∣∣ = 2|ε1 − ε2| cos2(2θ),

J2 =
∣∣∣∣∣ ∂{ε1, ε2}
∂
{
�2

1,�
2
2

}
∣∣∣∣∣ =

∣∣∣∣�2
1 − �2

2

ε1 − ε2

∣∣∣∣ .
(3.27)

3.2.1. Distinction of real and complex eigenvalues. In order to give the jpdf from
equation (3.19) for variables �2

1,2 alone, we have to integrate over the remaining real variables
s and θ . Here we have to distinguish between the case of two real eigenvalues, and that of a
complex conjugate pair. Starting from a real matrix C in equation (3.22), all new variables, in
particular ε1,2, are real. In view of equation (3.25), there are two possibilities if the radicand
is to remain positive:

(i) �2
1,�

2
2 are both real ⇒ 1

4

(
�2

1 − �2
2

)2
+ s2 � 0 which is always satisfied, or

(ii) �2
1,�

2
2 are complex conjugates: �2

1 − �2
2 ∈ iR ⇒ s2 � − 1

4

(
�2

1 − �2
2

)2 � 0.

We thus obtain for the jpdf

d�2
1 d�2

2P
(
�2

1,�
2
2

) = 2cN=2η+

π3/2
d�2

1 d�2
2 eη−(�2

1+�2
2)|�2

1�
2
2|ν/2

∫ 2π

0
dθ
∣∣�2

1 − �2
2

∣∣ cos2(2θ)

×
∫ ∞

smin

ds2
∫ ∞

0

dt√
t

exp

[
−η2

+

(
�4

1 + �4
2 + 4s2

)
t − 1

4t

]
Kν

2

(
2η2

+

∣∣�2
1�

2
2

∣∣t),
(3.28)

where s2
min = max

{
0,−(�2

1 − �2
2

)2/
4
}
. The θ -integral is trivial.

For two real eigenvalues having smin = 0, the integral over s can be performed, leading
to the following simplification for the remaining t-integral:

2
∫ ∞

0

dt

t
e−η2

+(�4
1+�4

2)t− 1
4t K ν

2

(
2η2

+

∣∣�2
1�

2
2

∣∣t) = 2Kν
2

(
η+

∣∣�2
1

∣∣)2Kν
2

(
η+

∣∣�2
2

∣∣). (3.29)

Here we have used equation 6.653.2 of [34] after changing variables t → u = 1
2t

. When
ordering the two eigenvalues as �2

1 > �2
2, the jpdf equation (3.28) can thus be written as

P
(
�2

1,�
2
2

) = cN=2
(
�2

1 − �2
2

) ∏
j=1,2

|�2
j |ν/2 eη−�2

j 2Kν
2

(
η+

∣∣�2
j

∣∣), �2
1,2 ∈ R, (3.30)

as was claimed in equation (2.9) in conjunction with equation (2.13) for N = 2.
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For two complex conjugate eigenvalues, the s-integral leads to the complementary error
function, without further simplification. Here we order 0 < Im�2

1 = −Im�2
2 as in equation

(2.10) to obtain the following real, positive distribution:

P
(
�2

1,�
2
2

)
d�2

1 d�2
2 = cN=2 d�2

1 d�2
2

(
�2

1 − �2
2

)∣∣�2
1

∣∣ν/2|�2
2|ν/2 eη−(�2

1+�2
2)

×2
∫ ∞

0

dt

t
e−η2

+(�4
1+�4

2)t− 1
4t K ν

2

(
2η2

+�
2
1�

2
2t
)
erfc
(
η+

√
t
∣∣�2

1 − �2
2

∣∣), �2
1,2 ∈ C.

(3.31)

Because the integral depends only on the modulus |Im�2
1| = |Im�2

2|, we can define its square
root to be the weight of each eigenvalue �2

j , as in equation (2.14). The limit |Im�2
1| → 0

smoothly reduces the integral in equation (3.31) to equation (3.29), using that erfc(0) = 1.
Combining the real and complex cases, and still assuming the eigenvalue ordering, we

can write the jpdf most generally as follows:

d2z1 d2z2P(z1, z2) = cN=2 d2z1 d2z2(z1 − z2)w(z1)w(z2)

× (δ(y1)δ(y2)�(x1 − x2) − 2iδ2(z1 − z∗
2)�(y1)), (3.32)

where we have switched variables �2 = z = x + iy, including for the differentials,
d�2 d�∗ 2 = (dx + idy)(dx − idy) = −2idx dy = −2i d2z. This is just the jpdf in
equation (2.9) including the weight equation (2.12), and this completes our computation
for the N = 2 case.

3.3. General structure for arbitrary N

In this subsection, we will compute the jpdf for any N—both even and odd—given in terms
of the eigenvalues �2

j of the Wishart matrix C = ABT . We start from equation (2.7) which
we repeat here for convenience:

P(C) ∼ exp[η− TrC]
∫

RN(N+ν)

dA

∫
RN(N+ν)

dB exp
[
−η+

2
Tr(AAT + BBT )

]
δ(C − ABT ).

(3.33)

We will eventually use the results from the previous two subsections as building blocks.
Instead of using a generalized Schur (or QZ) decomposition involving unitary matrices

to bring A and B to the upper triangular form, we will restrict ourselves here to orthogonal
transformations. The best we can achieve in this way is a so-called almost (or quasi) upper
triangular (AUT) form for one of the matrices, and an upper triangular form for the second
(which is also AUT). An AUT matrix is composed of a block diagonal matrix, having non-
vanishing 2 × 2 blocks along the diagonal for even N, and an additional 1 × 1 block at the
end if N is odd. The remaining non-zero elements of an AUT matrix all lie above the block
diagonal.

The precise transformation that we make is

A = OA(�A + �A)OT
B , BT = OB(�B + �B)OT

A . (3.34)

Here �A and �B are block diagonal, and �A and �B are zero except in elements strictly
above the block diagonal. �A + �A and �B + �B are hence AUT. Note that OA is of size
N × N , and OB is of size (N + ν) × (N + ν). �A and �A are each of the same size as A itself
(i.e. rectangular), and similarly �B and �B are of the same size as BT.

To make the transformation (3.34) unique, having the same number of degrees of freedom
(dof) on the left- and right-hand sides, we restrict OA and OB as follows:

OA ∈ O(N)/O(2)N/2, OB ∈ O(N + ν)/O(2)N/2O(ν) for even N,

OA ∈ O(N)/O(2)(N−1)/2, OB ∈ O(N + ν)/O(2)(N−1)/2O(ν) for odd N.
(3.35)
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Table 1. Counting dof of matrix D equation (2.2) before and after change of variables.

Matrix Degrees of freedom
Matrix Degrees of freedom Even N Odd N

A N(N + ν) �A 2N 2N − 1
B (N + ν)N �B 2N 2N − 1

�A
N2

2 − N + νN N2+1
2 − N + νN

�B
N2

2 − N N2+1
2 − N

OA
N2

2 − N N2+1
2 − N

OB
N2

2 − N + νN N2+1
2 − N + νN

The residual symmetries leading to these cosets are rotations within each block on the diagonal,
and, loosely speaking, the extra factor O(ν) can be thought of as originating from the reduction
of B from the rectangular to the square form, as in the N = 1 and 2 cases earlier. The precise
counting of dof is given in table 1, matching the sum of dof of A and B for all N.

Under this orthogonal transformation, the integrand in equation (2.7) changes as follows:

exp

[
−η+

2
Tr(AAT + BBT )

]
= exp

[
−η+

2
Tr
(
�A�T

A + �B�T
B + �A�T

A + �B�T
B

)]
. (3.36)

The pre-factor exp [η− Tr C] = exp
[
η−
∑N

i=1 �2
i

]
remains unchanged, with the relation

between the eigenvalues �2
i and the new variables yet to be determined.

The transformation equation (3.34) leads to the following differentials:

(dA)ij = (OA

[
OT

A dOA(�A + �A) − (�A + �A)OT
B dOB + d�A + d�A

]
OT

B

)
ij
,

(dBT )ij = (OB

[
OT

B dOB(�B + �B) − (�B + �B)OT
A dOA + d�B + d�B

]
OT

A

)
ij
.

(3.37)

Here we have used the fact that for orthogonal transformations (with OT O = I ), the
differential OT dO is anti-symmetric. This remains true for our special choice of cosets.
When considering the invariant line element Tr(dA dAT + dB dBT ), the rotations outside the
square brackets in equation (3.37) can be dropped.

We will now compute the Jacobian for the change of variables from {dA, dBT } to{
d�A, d�B, d�A, d�B,OT

AdOA,OT
B dOB

}
. Here we use the differentials for convenience as

for the orthogonal matrices, only these constitute independent variables (see also [31] for a
similar discussion for the real Ginibre ensemble). In particular, counting dof OT

A dOA is an
anti-symmetric matrix with zeros not just on the diagonal but on the block diagonal. Similarly
OT

B dOB is an anti-symmetric matrix with zeros on the block diagonal for the first N elements,
and a zero-block of size ν × ν on the remaining part of the diagonal.

In the differential equation (3.37), the variables {d�A, d�B, d�A, d�B} are already
diagonal, with

∂(dA)ij

∂(d�A)pq

= δipδjq,
∂(dA)ij

∂(d�A)pq

= δipδjq, (3.38)

and similarly for dBT . This contributes a unity matrix block to the Jacobi matrix J , when
considering the corresponding elements of {dA, dBT } on and above the block diagonal.

The non-trivial contribution from the Jacobian therefore originates from differentiating
the remaining elements of {dA, dBT } below the block diagonal with respect to the independent
variables of

{
OT

A dOA,OT
B dOB

}
, where we also choose the lower block diagonal elements for

convenience. When appropriately ordering the elements of the Jacobi matrix (see appendix A
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and also a similar discussion in [31]), the contributions proportional to �A and �B in equation
(3.37) will drop out, being part of a lower triangular sub-matrix in J .

For the sake of argument, we restrict ourselves in this section to the case of �A and �B

being diagonal. The more general (and typical) case in which �A and �B contain 2×2 blocks
is treated in appendix A.

Arranging the remaining matrix elements below the block diagonal of dA and of the
square part of dBT into pairs, this leads to a 2 × 2 block diagonal Jacobi sub-matrix with
elements∣∣∣∣∣∣det

⎛
⎝ ∂(dA)ij

∂(OT
AdOA)ij

∂(dB)ij

∂(OT
AdOA)ij

∂(dA)ij

∂(OT
B dOB)ij

∂(dB)ij

∂(OT
B dOB)ij

⎞
⎠
∣∣∣∣∣∣ =

∣∣∣∣det

(
(�A)jj −(�B)ii

−(�A)ii (�B)jj

)∣∣∣∣ = ∣∣�2
j − �2

i

∣∣, (3.39)

where we used that (�A)jj (�B)jj = �2
j (no summations), and the �2

j are the eigenvalues of
the matrix C ≡ ABT . The remaining νN matrix elements below the block diagonal of dBT

give a diagonal sub-matrix with ν elements (�B)jj each. The resulting contribution to the
Jacobian is

J =
′∏

1�i<j�N

∣∣�2
i − �2

j

∣∣ N∏
j=1

|(�B)jj |ν . (3.40)

The prime on the product symbol denotes that only those factors with indices (i, j) strictly
below the block diagonal are to be included. Finally, we observe that the second product can
be written as

N∏
j=1

|(�B)jj |ν =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N/2∏
j=1

|det Bj |ν for even N,

(N−1)/2∏
j=1

|det Bj |ν |(�B)NN |ν for odd N,

(3.41)

in which Bj is the j th 2 × 2 block along the diagonal of the matrix �B . The same statement
is true in the more general case when �A (and �B) is not diagonal, as shown in appendix A.

Writing everything together, we have for the total measure

dA dB eη− Tr ABT − η+
2 Tr(AAT +BBT )

∼ d�A d�B d�A d�BO−1
A dOAO−1

B dOB

′∏
1�i<j�N

∣∣�2
i − �2

j

∣∣ N∏
i=1

eη−�2
i (3.42)

× e− η+
2 Tr(�T

A�A+�T
B�B+�T

A�A+�T
B�B)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N/2∏
j=1

|det Bj |ν for even N

(N−1)/2∏
j=1

|det Bj |ν |�B |νNN for odd N.

All constant factors are omitted here; we give the overall normalization constant later. We
reiterate that Bj here is the j th 2 × 2 block on the diagonal of �B . The integration over the
orthogonal dof as well as over the upper block triangular matrices �A,B can now be performed
as they decouple. The relevant dof for the right-hand side of equation (3.42) can thus be
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written in terms of the �2
i and 2 × 2 blocks of the matrices �A,B :

′∏
i<j

∣∣�2
i − �2

j

∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N/2∏
i=1

{
dAi dBi eη−(�2

2i−1+�2
2i ) e− η+

2 Tr(AT
i Ai+BT

i Bi )|det Bi |ν
}

for even N,

(N−1)/2∏
i=1

{
dAi dBi eη−(�2

2i−1+�2
2i ) e− η+

2 Tr(AT
i Ai+BT

i Bi )|det Bi |ν
}

× da db eη−�2
N e− η+

2 (a2+b2)|b|ν for odd N.

(3.43)

We have thus reduced the problem of computing the jpdf to a simpler problem involving only
2 × 2 and 1 × 1 blocks, which can be handled just as the N = 2 and N = 1 cases that we
treated in the previous two subsections. For this, it is necessary to order the eigenvalues as
described in equation (2.10). Then, following equation (3.32), each 2 × 2 block will make the
following contribution in variables �2

i = zi (with �2
2i−1 and �2

2i either both real or complex
conjugates, and ordered as described at the end of section 3.2):

d2z2i−1 d2z2i (z2i−1 − z2i )w(z2i−1)w(z2i )

× (δ(y2i−1)δ(y2i )�(x2i−1 − x2i ) − 2iδ2(z2i−1 − z∗
2i )�(y2i−1)). (3.44)

In a similar way, we have for the 1 × 1 block when N is odd

d2zN |zN |ν/2 eη−zN g(zN)δ(yN) = d2zNw(zN)δ(yN), (3.45)

where zN will be real. Note that collecting all these quantities in equation (3.43) for each
i = 1 to [N/2], the factors �2

2i−1 − �2
2i will combine with the

∏′
i<j

(
�2

i − �2
j

)
to make

a true Vandermonde determinant
∏

i<j

(
�2

i − �2
j

)
, and we were able to drop the modulus

sign because of the chosen ordering. The final answer for the jpdf is therefore as claimed in
equation (2.9). The normalization constant can be determined by keeping track of all volume
factors and μ-dependences; it is given by

cN = (VO(N)2−N(2π)−N(N+1)/4)2(2π)−Nν/2 VO(N + ν)

VO(N)VO(ν)
(2μ)−N(N+ν)η

−N(N+ν−1)/2
+ .

(3.46)

4. Finite- and large-N density correlation functions

4.1. The kernel

The kernel KN(z1, z2) as it initially appears in equation (2.18) is defined as follows [7]:

KN(z1, z2) ≡
N∑

k=1

N∑
l=1

A−1
kl zk−1

1 zl−1
2 , (4.1)

where the matrix A of dressed moments is related to F by

Akl ≡
∫

d2z1 d2z2F(z1, z2)z
k−1
1 zl−1

2 . (4.2)

However, to evaluate the matrix A and its inverse directly is not trivial in general. Fortunately,
the kernel may also be derived from the expectation value of the product of two characteristic
polynomials [20]:

HN(λ, γ ) ≡ 〈det(λ − D) det(γ − DT )〉N, (4.3)

16



J. Phys. A: Math. Theor. 43 (2010) 085211 G Akemann et al

where D was given in equation (2.2). An explicit form for HN(λ, γ ) was derived by the
authors in [20]7. In the case of the real Ginibre ensemble, the spectral density was known
prior to its integrability [4] and thus was used for the determination of the kernel in [7].

To establish the relationship between KN(z1, z2) and HN−2(λ, γ ), we first relate the latter
to the complex eigenvalue density RC

1,N (z). If we choose γ = λ∗ with Im λ2 > Im γ 2, we
have

HN−2(λ, λ∗) =
∫

C

d2z1 . . .

∫
C

d2zN−2PN−2(z1, . . . , zN−2)(λλ∗)ν
N−2∏
j=1

(λ2 − zj )(λ
∗2 − zj )

= cN−2

cN

1

exp[−η−(λ2 + λ2∗)]g(λ2)2(λ2 − λ2∗)(−2i)�(Im λ2)

×
∫

C

d2z1 . . .

∫
C

d2zN−2P̃N (z1, . . . , zN−2, λ
2, λ2∗), (4.4)

where P̃N indicates that this jpdf is conditioned that the last two eigenvalues are complex
conjugates and ordered. The last line in equation (4.4) is thus nothing but the complex density
RC

1,N (λ2), obtained by inserting a delta function into the partition function together with the
constraint that the last two eigenvalues are complex conjugates. We thus arrive at the following
relationship:

RC

1,N (z) = cN

cN−2

w(z)w(z∗)
|z|ν (−2i)(z − z∗)HN−2(

√
z,

√
z∗). (4.5)

On the other hand, we have from equation (2.25) an equation that relates the complex density
directly to the kernel

R1,N (z) =
∫

C

d2uKN(z, u)F(u, z) (4.6)

and so for the complex z inserting equation (2.19)

RC

1,N (z) = KN(z, z∗)w(z)w(z∗)(−2i) sgn(y). (4.7)

We can therefore make the identification (after analytic continuation in each argument)

KN(u, v) = cN

cN−2
(u − v)

HN−2(
√

u,
√

v)

(uv)ν/2
. (4.8)

Using the solution for HN(λ, γ ) obtained in [20] as well as equation (3.46), we then have for
the properly normalized kernel that

KN(u, v) = η−
8π(4μ2η+)ν+1

N−2∑
j=0

(
η−
η+

)2j
(j + 1)!

(j + ν)!

{
Lν

j+1

(
v

4μ2η−

)
Lν

j

(
u

4μ2η−

)

−Lν
j+1

(
u

4μ2η−

)
Lν

j

(
v

4μ2η−

)}
, (4.9)

which is the same as equation (2.20). It can be further simplified to be expressed as an anti-
symmetric derivative as follows. For modified Laguerre polynomials, we can use a recurrence
relation to show that

(j +1)
{
Lν

j+1(y)Lν
j (x)− (x ↔ y)

} =
(

y
∂

∂y
Lν

j (y) + (j + ν +1 − y)Lν
j (y)

)
Lν

j (x)− (x ↔ y)

=
(

y
∂

∂y
− x

∂

∂x
− (y − x)

)
Lν

j (x)Lν
j (y). (4.10)

7 Note that P and Q were called A and B in [20]; we set n in [20] to unity here.
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The kernel therefore becomes

KN(z1, z2) = η−
8π(4μ2η+)ν+1

(
y

∂

∂y
− x

∂

∂x
− (y − x)

) N−2∑
j=0

(
η−
η+

)2j
j !

(j + ν)!
Lν

j (x)Lν
j (y),

(4.11)

where x and y are evaluated at x = z1/4μ2η− and y = z2/4μ2η− after the differentiations.
The symmetric kernel in terms of Laguerre polynomials on the right-hand side of
equation (4.11) is nothing else but the kernel of the complex (β = 2) two-matrix model
[16].

We have explicitly checked that a similar relation holds relating the kernel of the non-
chiral real Ginibre ensemble (see the equation after 5.26 in the second reference of [8]) to
(∂y − ∂x − 2(y − x)) operating on the kernel of the non-chiral complex Ginibre ensemble (see
equation (40) in [32]) and thus this is a more general feature.

Note that the convention used in [20] for defining the ‘kernel’ was different from that
adopted here (in equation (4.9)); in that paper, there was no division by (uv)ν/2 and the
summation ran to N. There was also a minor typographical error in the arguments of one
function (equation (33) in [20]).

4.2. Finite-N results

From equation (2.18), we have

R1(z1) =
∫

C

d2zKN(z1, z)F(z, z1) ≡ RC

1 (z1) + δ(y1)R
R

1 (x1). (4.12)

We now simply insert the finite-N kernel equation (4.9) and weight function equation (2.12)
into this using equation (2.19), to give

RC

1 (z) = −2i sgn(Im z) 2
∫ ∞

0

dt

t
e−η2

+t (z2+z∗2)− 1
4t K ν

2

(
2η2

+t |z|2
)

erfc(2η+

√
t |Im z|)

× η−|z|ν e2η−Re z

8π(4μ2η+)ν+1

N−2∑
j=0

(
η−
η+

)2j
(j + 1)!

(j + ν)!

{
Lν

j+1

(
z∗

4μ2η−

)
Lν

j

(
z

4μ2η−

)
− c.c.

}

(4.13)

RR

1 (x) = η−
8π(4μ2η+)ν+1

∫ ∞

−∞
dx ′sgn(x − x ′)|xx ′|ν/2 eη−(x+x ′)2Kν

2
(η+|x|)2Kν

2
(η+|x ′|)

×
N−2∑
j=0

(
η−
η+

)2j
(j + 1)!

(j + ν)!

{
Lν

j+1

(
x ′

4μ2η−

)
Lν

j

(
x

4μ2η−

)
− (x ′ ↔ x)

}
. (4.14)

These results are valid for even N only. Alternatively, we could have used the form of
equation (4.11) which is more reminiscent of the corresponding chGOE result [35] at μ = 0.
In fact we have checked that in the limit μ → 0, the complex density equation (4.13) vanishes,
and the real density equation (4.14) reduces to the finite-N expression (equation (5.18) in [35])
for the chGOE, after using some identities for modified Laguerre polynomials. We have also
checked these results numerically using Monte Carlo, by generating random matrices and
explicitly diagonalizing them.

As the last step we can change from squared variables z = x + iy = �2 to Dirac
eigenvalues �, using equation (2.28). These two densities are illustrated8 in figures 1 and 2,
showing the localization of the support for finite N.
8 Here and in the following, numerical integrals are carried out using [36].
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yy

R1Dirac(z)R1 Dirac(z)

Figure 1. The complex spectral density RC

1 Dirac(z) for finite N = 10 at maximal non-Hermiticity
μ2 = 1 (left) and intermediate μ2 = 0.5 (right), both for ν = 0. We show only the first quadrant
for symmetry reasons. For μ = 1, we see a circular ‘support’ growing with

√
N , apart from the

repulsion from the axes. For decreasing μ, the ‘support’ becomes an ellipse, with the eigenvalues
moving towards, as well as onto, the real axis. Note the increased height in the right plot.
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R1Dirac((i)x)R1 Dirac((i)x)

Figure 2. The spectral density RR

1 Dirac(x) for real eigenvalues (blue full line) and RR

1 Dirac(ix)

for purely imaginary eigenvalues (red dashed line) for finite N = 10 at almost maximal non-
Hermiticity μ2 = 0.95 (left) and intermediate μ2 = 0.5 (right), both for ν = 0. Here we have
chosen (almost) the same parameter values as those in figure 1, with μ2 = 0.95 here close to
1 there. Because of chiral symmetry, real and imaginary eigenvalues come in ± pairs and we
only have to show the positive axes, comparing both distributions in the same plot. Whilst for
μ2 = 0.95, the distributions of real and imaginary Dirac eigenvalues are almost the same, for
μ2 = 0.5 there are more eigenvalues on the real than on the imaginary axis.

4.3. The large-N limit at strong non-Hermiticity

In the strong non-Hermitian limit, we keep μ fixed as we take the large-N limit. This
necessitates no rescaling of the eigenvalues (see section 2), which is why our result is also true
away from the origin. Let us first determine the large-N limit of the kernel.

Equation 8.976.1 in [34] gives us the so-called Hille–Hardy formula (the equivalent of
Mehler’s formula for Hermite polynomials):

S(x, y, z) ≡
∞∑

j=0

j !

(j + ν)!
Lν

j (x)Lν
j (y)zj = (xyz)−ν/2

1 − z
e− z

1−z
(x+y)Iν

(
2
√

xyz

1 − z

)
. (4.15)

We can insert this into equation (4.11) and evaluate it after extending the sum to infinity. On
differentiating the right-hand side, certain terms cancel, and we can therefore establish that

y
∂S(x, y, z)

∂y
− x

∂S(x, y, z)

∂x
= − z

1 − z
(y − x)S(x, y, z). (4.16)
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Hence the limit as N → ∞ of the kernel is easily seen to be

KS
ν (z1, z2) ≡ lim

N→∞
KN(z1, z2) = η3

+

8π
(z1 − z2) e−η−(z1+z2)(z1z2)

−ν/2Iν(2η+
√

z1z2). (4.17)

Because of this simplification, this is now proportional to the β = 2 kernel at strong non-
Hermiticity. Multiplication by the weight function equation (2.12) which contains the modulus
|z1z2|ν/2 will only cancel the pre-factor in equation (4.17) up to a phase. Putting all ingredients
together, we can determine the eigenvalue densities using equation (2.25):

ρCS
ν (z) = sgn(Im z)(−2i)(z − z∗)

η3
+

8π
Iν (2η+|z|)

× 2
∫ ∞

0

dt

t
exp

[
−η2

+(z
2 + z∗2)t − 1

4t

]
Kν

2

(
2η2

+|z|2t
)
erfc(2η+

√
t |Im z|), (4.18)

ρRS
ν (x) = η3

+

8π
2Kν

2
(η+|x|)

(∫ ∞

0
dx ′|x − x ′| 2Kν

2
(η+|x ′|) Iν(2η+

√
xx ′)

+
∫ 0

−∞
dx ′|x − x ′| 2Kν

2
(η+|x ′|) Jν(2η+

√
x|x ′|)

)
. (4.19)

Note the change from Bessel-I to Bessel-J function inside the integral for negative arguments,
after taking into account the aforementioned phase.

If we rescale the eigenvalues as 2η+z
2 → z2 (and divide the densities by 2η+ accordingly),

we obtain the same densities as at maximal non-Hermiticity. These are obtained by setting
μ = 1 ⇒ η+ = 1

2 above, or by starting from the kernel equation (2.30) at maximal non-
Hermiticity. This feature that the strong limit can be obtained by rescaling the case of
maximal non-Hermiticity is generically true for complex RMT, see [30].

In figures 3 and 4, we show the densities of Dirac eigenvalues � for complex eigenvalues
and real or purely imaginary eigenvalues, respectively, using the mapping equation (2.28).
Because of the rescaling property just mentioned, we only show results here for maximal
non-Hermiticity. One can check analytically using a saddle-point approximation including
the fluctuations that for asymptotically large x, y the density equations (4.18) and (4.19) decay
as ∼1/|z| and 1/

√
x, respectively. After the mapping to Dirac eigenvalue equation (2.28) they

thus reach a plateau as seen in the figures. We note that the profiles of the densities on the
real and imaginary axis are very reminiscent to parallel cuts through the complex densities,
for both values of ν shown.

4.4. The large-N limit at weak non-Hermiticity

In the weak case, we scale μ and z with N as follows (as compared with the unscaled case, i.e.
we implicitly include here the first rescaling discussed in section 2.4):

μ ≡ α√
2N

, 4Nz ≡ ẑ, (4.20)

where α and ẑ are kept fixed throughout. Because of the rescaling of the eigenvalues here we
are magnifying the region around the origin.

For the weight function we thus simply obtain

lim
N→∞

Kν
2

(
η+

|z|
4N

)
= Kν

2

( |z|
8α2

)
and lim

N→∞
exp
[
η−

z

4N

]
= exp

[ z

8α2

]
. (4.21)

For the kernel we are interested in the limit of equation (4.9) in terms of the rescaled variables,
i.e. μ, η− and η+ which all now depend on N. Instead of using equation (4.11) it is slightly
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xx

y
y

Figure 3. The complex spectral density ρC S
ν Dirac(� = x + iy) at maximal non-Hermiticity μ = 1.

It is shown only in the first quadrant for symmetry reasons, for ν = 0 (left) and ν = 2 (right).
Increasing the number of exact zero eigenvalues ν leads to a stronger repulsion from the origin. At
ν = 0 this repulsion is still present due to chiral symmetry (or technically speaking the presence
of the Bessel-K function).
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Figure 4. The real spectral density of Dirac eigenvalues on the positive half-line at maximal non-
Hermiticity μ = 1 for ν = 0 (left) and ν = 2 (right). Because of chiral symmetry it is symmetric
on the negative real line, and because μ = 1 it is identical on the imaginary axis. For ν = 2 we
see the increased repulsion from the origin compared to ν = 0, as for the complex eigenvalues in
figure 3.

simpler if we can rewrite equation (4.9) so that the Laguerre polynomials inside the sum are of
the same degree j . Using the recurrence relationship for the Laguerre polynomials (equation
8.971.2 in [34]), we have

(n + 1)
{
Lν

n+1(v)Lν
n(u) − (u ↔ v)

} = ((n + 1 + ν)Lν
n(v) − vLν+1

n (v)
)
Lν

n(u) − (u ↔ v)

= uLν+1
n (u)Lν

n(v) − vLν+1
n (v)Lν

n(u). (4.22)

The kernel can therefore be written as

KN(z1, z2) = 1

8π(4μ2η+)ν+14μ2

N−2∑
j=0

(
η−
η+

)2j
j !

(j + ν)!

×
{
z1L

ν+1
j

(
z1

4μ2η−

)
Lν

j

(
z2

4μ2η−

)
− z2L

ν+1
j

(
z2

4μ2η−

)
Lν

j

(
z1

4μ2η−

)}
.

We now wish to take the limit N → ∞. For this to exist, we must multiply the kernel by the
spacing as well as by the appropriate number of zero-eigenvalues from the weight, as given
in equation (4.27) below. In equation (4.23) we will replace the sum with an integral over the
variable t ≡ j

N
∈ [0, 1]. Because of the different scaling in the weak limit we cannot use the

Hille–Hardy formula as before.
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Figure 5. The complex spectral density ρC W
ν Dirac(� = x + iy) at weak non-Hermiticity for

parameters α2 = 0.2 (left) and α2 = 1 (right), both at ν = 0 plotted on the same scale. For
increasing α more complex eigenvalues move in towards the imaginary axis, reaching figure 3 left
in the limit α → ∞.

In detail, using equation 8.978.2 in [34], we have for some real constant ν and fixed
t ∈ [0, 1] the standard Bessel asymptotic of the modified Laguerre polynomials:

lim
N→∞

[
N−νLν

tN

( x

N

)]
= tν/2x−ν/2Jν(2

√
xt). (4.24)

We also have (keeping t fixed so that j = tN → ∞)

lim
N→∞

(
1 − α2

2N

1 + α2

2N

)2j

= exp[−2α2t] and lim
N→∞

j !

(j + ν)!
Nν = t−ν . (4.25)

Therefore,

KW(z1, z2) ≡ lim
N→∞

[
1

(4N)2

(
z1z2

(4N)2

)ν/2

KN

(
z1

4N
,

z2

4N
;μ = α√

2N

)]
(4.26)

= 1

256πα2

∫ 1

0
ds s2 e−2α2s2{√z1Jν+1(s

√
z1)Jν(s

√
z2) − (z1 ↔ z2)}

= 1

128πα2

(
z2

∂

∂z2
− z1

∂

∂z1

)∫ 1

0
ds s e−2α2s2

Jν(s
√

z1)Jν(s
√

z2), (4.27)

after a simple change of variables in the integral. In the last line we expressed the kernel as a
derivative of the β = 2 kernel at weak non-Hermiticity. This corresponds to equation (4.11)
in which the second term −(y − x) now becomes sub-leading compared with the derivatives.
The same relation between the large-N kernel at weak non-Hermiticity is true for the β = 1
and β = 2 Ginibre ensembles [8, 32], respectively.

Collecting all elements we have for the complex density

ρCW
ν (z) = −2i sgn(Im z) exp

[
1

8α2
2Re z

]
KW(z, z∗)

× 2
∫ ∞

0

dt

t
exp

[
− t

64α4
(z2 + z∗2) − 1

4t

]
Kν

2

(
t

32α4
|z|2
)

erfc

( √
t

4α2
|Im z|

)
.

(4.28)

In figure 5, it is shown after mapping to Dirac eigenvalues. As a consistency check
we can take the limit α → ∞ while keeping z/α2 fixed to obtain once more the complex
density in the strong non-Hermiticity limit, equation (4.18). The precise mapping of weak
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Figure 6. The real spectral density of Dirac eigenvalues on the positive half-line scaled as for
weak non-Hermiticity for α2 = μ2/2N = 0.2 at ν = 0. We show results for finite N versus
numerical simulations. Both the eigenvalue densities for real eigenvalues RR

1,Dirac(x) and for pure

imaginary ones RR

1,Dirac(ix) are displayed in the same plot for comparison. Real density (upper
curve): N = 10 (blue full line), N = 20 (dark green dot-dashed line); imaginary density (lower
curve) N = 10 (red dashed line), N = 20 (black, dotted line). Dots with error bars: N = 100
Monte Carlo simulation of 104 matrices.

to strong eigenvalues is given by z
4α2 → 2η+z. Whilst the matching of the integrals over

t is straightforward, the mapping of the kernels multiplied by the weight is more involved.
Changing variables we have the following identity:

α2
∫ 1

0
ds s2 e−2α2s2{√z1Jν+1(s

√
z1)Jν(s

√
z2) − (z1 ↔ z2)}

= 2

(
z2

∂

∂z2
− z1

∂

∂z1

)∫ α

0
dt t e−2t2

Jν

(
t

√
z1

α

)
Jν

(
t

√
z2

α

)

→ 1

2

(
z2

∂

∂z2
− z1

∂

∂z1

)
exp

[
− (z1 + z2)

8α2

]
Iν

(√
z1z2

4α2

)
(4.29)

where in the last step we have extended the integral to infinity and used equation 6.633.2 of
[34]. The last differentiation is trivial, in effect acting only on the exponential function. We
thus obtain for the limiting kernel

lim
α→∞ α4KW(z1, z2)

∣∣
z

α2 fixed =
( z1

4α2
− z2

4α2

)
exp

[
− (z1 + z2)

8α2

]
Iν

(√
z1z2

4α2

)
, (4.30)

which precisely cancels the exponentials from the weight equation (4.21) to arrive at the
complex density at strong non-Hermiticity equation (4.18).

We now turn to the real density at weak non-Hermiticity. Looking at the definitions
equations (4.13) and (4.14) the main difference to the complex density is that here the kernel
is integrated, whereas the complex density is simply given by the kernel multiplied by the
weight.

Unfortunately, and in contrast to the strong non-Hermitian case, at weak non-Hermiticity,
the large-N limit and the integration do not commute, with the integral over the weak kernel
(4.27) not being absolutely convergent. Such a feature might have been expected, as the same
phenomenon occurs for the chGOE at μ = 0 [35]. However, in that case, the integrals could
be computed exactly before taking the large-N limit, leading to the correct result, which differs
from the naive limit by a factor of 2 in the normalization9. The integrals in equation (4.14) at
finite N are more involved, and this matter will be addressed in future work.
9 A quick guess generalizing this to our setting fails.
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For that reason, we show in figure 6 the real density for finite but large N = 10 and 20,
using the weak scaling from equation (4.26) and equation (4.20) for a given α. This underlines
that the weak limit for the real density does exist and convergence is rapid. Furthermore, we
have checked this by superimposing data for N = 100 using numerically generated random
matrices.

As a feature common to the strong limit, we note that the densities of real and purely
imaginary eigenvalues in figure 6 resemble cuts through the complex density in figure 5 left
at the same value of α2 = 0.2.

5. Conclusions

In this paper we have solved the chiral extension of the Ginibre ensemble of real asymmetric
matrices. It is given as a two-matrix model of rectangular matrices with real elements and
depends on a non-Hermiticity parameter μ. This model is relevant for computing the non-
Hermitian spectrum of Dirac operators with real elements in field theory. Our work completes
the programme of solving the three chiral or Wishart–Laguerre counterparts of the classical
Ginibre ensembles, where earlier works by Osborn and one of the authors extended the models
with complex and quaternion real elements, respectively.

Whilst our model inherits most of the integrable structure of the real Ginibre ensemble, its
joint probability distribution required a more complicated calculation, which took much of our
effort here. Just as in the Ginibre ensembles, the probability density for the matrix elements is
Gaussian, whereas the one for the eigenvalues becomes non-Gaussian. It contains a Bessel-K
function and integral thereof, replacing the role of the complementary error function in the
real Ginibre ensemble.

The main building block for all eigenvalue correlation functions is given by a kernel of
Laguerre polynomials in the complex plane and was derived in a previous paper. Here, we
give all eigenvalue density correlation functions for finite (even) N valid for all values of μ,
in particular the spectral one-point densities for real eigenvalues and for complex non-real
eigenvalues. Moreover, we have uncovered a way of expressing the β = 1 kernel in terms of
the β = 2 kernel at finite and large N, both for the chiral and non-chiral Ginibre ensembles.
We conjecture that a similar relation holds for the β = 4 kernel as well.

When taking microscopic large-N limits, we focus on the origin where the chiral symmetry
of our model is the most important. For both the limit at strong non-Hermiticity with
0 < μ2 < 1, and the limit at weak non-Hermiticity with μ2 ∼ 1/N , we give compact
expressions for the kernel. This leads to explicit expressions for the complex spectral one-
point densities and the real density at strong non-Hermiticity.

It would be very interesting to compare these results with simulations from non-Hermitian
lattice gauge theory, as was successfully done previously for the other two chiral two-matrix
models.

Further extensions would be to investigate the bulk or the soft edge scaling limit. We
expect that in the former, the chiral ensembles will agree with the Ginibre ensembles, as the
effect of chirality becomes unimportant in the bulk.
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Appendix A. Details on the calculation of the Jacobian

In this appendix, we give a few more details to complete the computation of the Jacobian
from section 3.3. In particular, we first give a precise ordering of matrix elements leading to
a block-triangular Jacobian. Second we will treat the case of non-diagonal matrices �A and
�B .

For the first purpose, we repeat equation (3.37) including matrix indices, after dropping
the outside rotations:

(dA)ij =
N∑

k=1

(
OT

A dOA

)
ik
(�A + �A)kj −

N+ν∑
k=1

(�A + �A)ik
(
OT

B dOB

)
kj

+ (d�A)ij + (d�A)ij , (A.1)

(dBT )ij =
N+ν∑
k=1

(
OT

B dOB

)
ik
(�B + �B)kj −

N∑
k=1

(�B + �B)ik
(
OT

A dOA

)
kj

+ (d�B)ij + (d�B)ij . (A.2)

We now give an ordering leading to a block-triangular Jacobi matrix, with variables {dA, dBT }
in the columns and

{
d�A, d�B, d�A, d�B,OT

A dOA,OT
B dOB

}
in the rows. For the block

diagonal matrices �A,B and upper block-diagonal matrices �A,B (of different size), this is
trivial: we just group them together with the corresponding elements of dA and dBT . For
example, when N is even and ν > 0, this will give

(dA)11, (dA)12, (dA)21, (dA)22, (dA)33, . . . , (dA)NN, (dBT )11, . . . , (dBT )NN, (dA)13,

(dA)14, . . . , (dA)1,N+ν, (dA)23, . . . , (dA)N,N+ν, (dBT )13, . . . , (dBT )N−2,N (A.3)

versus

(d�A)11, (d�A)12, (d�A)21, (d�A)22, (d�A)33, . . . , (d�A)NN, (d�B)11, . . . , (d�B)NN,

(d�A)13, (d�A)14, . . . , (d�A)1,N+ν, (d�A)23, . . . , (d�A)N,N+ν, (d�B)13, . . . , (d�B)N−2,N .

(A.4)

The resulting sub-Jacobi matrix is clearly the identity matrix, and the order we have picked is
arbitrary as long as we pair (dA)ij with (d�A)ij or (d�A)ij , and respectively for B.

It remains to order the matrix elements dA and dBT below the block diagonal. In order
to obtain sub-blocks as in equation (3.39), we will always pair (dA)ij with the square part of
(dBT )ij , with i > j and i, j ∈ 1, . . . , N and finish with the rectangular part of (dBT )ij , with
i = N + 1, . . . , N + ν. For that we write the following partial differentials denoted by ‘|’ from
equations (A.1) and (A.2):

(dA|)i>j ≡
p<j<i∑
p=1

(
OT

A dOA

)
ip

(�A)pj −
N+ν∑

q>i>j

(�A)iq
(
OT

B dOB

)
qj

, (A.5)

(dBT |)i>j ≡
p<j<i∑
p=1

(
OT

B dOB

)
ip

(�B)pj −
N∑

q>i>j

(�B)iq
(
OT

A dOA

)
qj

. (A.6)

Here we have already used that �A,B are upper triangular and that i > j lets only the
independent elements of the orthogonal differentials appear (we have chosen the below block
diagonal ones).
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For the variables �A,B below the block diagonal, in order not to interfere with the block
diagonals equation (3.39), we introduce the following ordering of elements:

(i, j) ≺ (i, p) if p < j,

(i, j) ≺ (q, j) if q > i.
(A.7)

Here ≺ implies that the matrix element (i, j) on the left, that is (dA)ij
((

OT
A dOA

)
ij

)
, has to

appear before the one on the right10. Looking back to equations (A.5) and (A.6), this implies
that the elements (dA)ij and (dBT )ij that depend on the most elements of

(
OT

A dOA

)
ij

and(
OT

B dOB

)
ij

will appear first, leading to a lower triangular structure. However, the ordering
equation (A.7) is not unique. We will proceed 2 × 2 blockwise (plus 1 × 2 blocks for the last
row when N is odd) going down the diagonal, in order to preserve the block-diagonal structure
when the matrices �A,B are not diagonal.

We thus continue the labelling in equations (A.3) and (A.4) as

(dA)32, (dBT )32, (dA)31, (dBT )31, (dA)42, (dBT )42, (dA)41, (dBT )41, (dA)54, (dBT )54, . . . ,

(dA)N1, (dBT )N1 (A.8)

versus(
OT

A dOA

)
32,
(
OT

B dOB

)
32,
(
OT

A dOA

)
31,
(
OT

B dOB

)
31,
(
OT

A dOA

)
42,
(
OT

B dOB

)
42,(

OT
A dOA

)
41,
(
OT

B dOB

)
41,
(
OT

A dOA

)
54,
(
OT

B dOB

)
54, . . . ,

(
OT

A dOA

)
N1,
(
OT

B dOB

)
N1.

(A.9)

It remains for us to order the rectangular part of (dBT )ij with i = N + 1, . . . , N + ν versus
the corresponding

(
OT

B dOB

)
ij

. Using the same order as in equation (A.7), we complete our
Jacobi matrix by

(dBT )N+1,N , (dBT )N+1,N−1, . . . , (dBT )N+1,1, (dBT )N+2,N , . . . , (dBT )N+ν,1 (A.10)

versus(
OT

B dOB

)
N+1,N

,
(
OT

B dOB

)
N+1,N−1, . . . ,

(
OT

B dOB

)
N+1,1,

(
OT

B dOB

)
N+2,N

, . . . ,(
OT

B dOB

)
N+ν,1. (A.11)

In the second part of this appendix, we will deal with the case of �A,B being 2 × 2
block matrices rather than diagonal, which was omitted in section 3.3. We start with N
even, and first only deal with the matrix elements dA and the square part of dBT below
the block diagonal (equations (A.8) and (A.9)). In this case it is no longer sufficient to
study one pair of neighbouring elements as in equation (3.39), but rather four pairs. This
leads to the following 8 × 8 matrix with the order chosen above. In the columns, we put
(dA)i,j+1, (dBT )i,j+1, (dA)ij , (dBT )ij , (dA)i+1,j+1, (dBT )i+1,j+1, (dA)i+1,j , (dBT )i+1,j , and in
the rows the elements (OT

A dOA)ij and (OT
B dOB)ij in the corresponding order. Using

equations (A.1) and (A.2), this leads to the following sub-matrices down the diagonal for
each odd i and odd j :⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(�A)j+1,j+1 −(�B)ii (�A)j+1,j 0 0 −(�B)i+1,i 0 0
−(�A)ii (�B)j+1,j+1 0 (�B)j+1,j −(�A)i+1,i 0 0 0
(�A)j,j+1 0 (�A)jj −(�B)ii 0 0 0 −(�B)i+1,i

0 (�B)j,j+1 −(�A)ii (�B)jj 0 0 −(�A)i+1,i 0
0 −(�B)i,i+1 0 0 (�A)j+1,j+1 −(�B)i+1,i+1 (�A)j+1,j 0

−(�A)i,i+1 0 0 0 −(�A)i+1,i+1 (�B)j+1,j+1 0 (�B)j+1,j

0 0 0 −(�B)i,i+1 (�A)j,j+1 0 (�A)jj −(�B)i+1,i+1

0 0 −(�A)i,i+1 0 0 (�B)j,j+1 −(�A)i+1,i+1 (�B)jj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.12)
10 Our ordering is different from appendix A.37 in [31] for the real Ginibre ensemble.
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We can easily verify (using the symbolic manipulation capabilities of Mathematica [36], for
example) that the modulus of the determinant of this is identical to

Jij = |(Di − Dj)
2 + (Si − Sj )(SiDj − SjDi)| (A.13)

in which Di is the determinant, and Si the trace, of the 2 × 2 matrix Ui given by (only relevant
for odd i)

Ui ≡
(

(�A)ii (�A)i,i+1

(�A)i+1,i (�A)i+1,i+1

)(
(�B)ii (�B)i,i+1

(�B)i+1,i (�B)i+1,i+1

)
. (A.14)

The same definition obviously applies for subscript j . However, Di and Si can of course be
written in terms of the eigenvalues of Ui, which we denoted as �2

i and �2
i+1, i.e.

Di = det Ui = �2
i �

2
i+1, Si = Tr Ui = �2

i + �2
i+1. (A.15)

Substituting these into equation (A.13), and factorizing, gives

Jij = ∣∣(�2
i − �2

j

)(
�2

i+1 − �2
j

)(
�2

i − �2
j+1

)(
�2

i+1 − �2
j+1

)∣∣. (A.16)

This is exactly what we got in the case when the �A and �B matrices were diagonal, i.e. the
product of four copies of equation (3.39), one for each of the combinations (i, j), (i + 1, j),
(i, j + 1) and (i + 1, j + 1).

When N is odd, we can treat the 2 × 2 blocks up to N − 1 (inclusive) as before. We
still have to consider the final column of dA, etc, and it is necessary here to treat (j,N) and
(j + 1, N) together as 2 × 1 blocks (for odd values of j in the range 1 � j < N). Hence, we
have extra diagonal blocks in the Jacobian (for each odd j ) of the form⎛

⎜⎜⎝
(�A)j+1,j+1 −(�B)NN (�A)j+1,j 0
−(�A)NN −(�B)j+1,j+1 0 (�B)j+1,j

(�A)j,j+1 0 (�A)jj −(�B)NN

0 (�B)j,j+1 −(�A)NN (�B)jj

⎞
⎟⎟⎠ (A.17)

which is in fact the first sub-block of equation (A.12) with i = N . The modulus of the
determinant of this is identically equal to

JNj = ∣∣Dj − Sj�
2
N + �4

N

∣∣, (A.18)

where we used that (�A)NN(�B)NN = �2
N (no sums), and Dj and Sj were defined as before.

But we can switch to writing Dj and Sj in terms of the eigenvalues of Uj and this gives

JNj = ∣∣(�2
N − �2

j

)(
�2

N − �2
j+1

)∣∣. (A.19)

We see that this is again of the expected form.
Let us turn to the remaining variables, the rectangular part of dBT in equations (A.10) and

(A.11). We first suppose that N is even. For each i and each odd j we find that the variables
(dBT )i,j+1, (dBT )ij and

(
OT

B dOB

)
i,j+1,

(
OT

B dOB

)
ij

are now coupled into the following 2×2
blocks: (

(�B)j+1,j+1 (�B)j+1,j

(�B)j,j+1 (�B)jj

)
, (A.20)

whose determinant is (after a relabelling 2j − 1 → j ) simply det Bj (using the definition
of Bj after equation (3.41)). This is independent of i which takes ν different values,
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N + 1 � i � N + ν. We therefore have a total contribution to the Jacobian of
N/2∏
j=1

|det Bj |ν for N even, (A.21)

which is exactly as before (equation (3.41)).
Finally, when N is odd, we just pick up an extra factor of (�B)NN from each of the ν cells

in the last column (dBT )iN , and so
(N−1)/2∏

j=1

|det Bj |ν |(�B)NN |ν for N odd. (A.22)

This ends the calculation for non-diagonal matrices �A,B .
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